Effects of caffeine intake and performance pressure on working memory

Laila Indra Lestari    -  Department of Psychology, Faculty of Psychology, Universitas Negeri Malang, Malang, Indonesia
Sri Kusrohmaniah*    -  Master in Psychology, Faculty of Psychology, Universitas Gadjah Mada, Yogyakarta, Indonesia

(*) Corresponding Author
Performance pressure and caffeine consumption, a common combination in daily life, have both been shown to affect cognitive performance. However, previous research has not fully elucidated the extent to which the effects of caffeine and performance pressure impact cognitive function, especially working memory. This study aims to examine the possibility that caffeine can enhance working memory performance under pressure. A total of 61 participants aged 18 to 32 participated, divided into four groups. Experiment-based data collection was conducted with a single-blind design. Working memory was measured by Modular Arithmetic Tasks with the OpenSesame program. All participants were asked to perform arithmetic tasks and arousal levels were measured using the Galvanic Skin Response (GSR). The findings revealed no evidence of an interaction effect of caffeine intake and performance pressure on working memory (F= .632, p= .431,hp2= .012). Given the prevalence of caffeine intake prior to facing high-pressure situations, the consumption of a cup of coffee does not improve cognitive performance as many would expect. However, caffeine intake had a stabilizing effect on the skin conductance response values during performance under pressure. Clinical psychologists can use a daily dose of caffeine as an alternative intervention or preventative measure to help patients reduce performance pressure-related anxiety.

Keywords: caffeine; Galvanic Skin Response; Modular Arithmetic Tasks; OpenSesame; performance pressure; working memory

  1. Aarts, E., Wallace, D. L., Dang, L. C., Jagust, W. J., Cools, R., & D’Esposito, M. (2014). Dopamine and the cognitive downside of a promised bonus. Psychological Science, 25(4), 1003–1009. https://doi.org/10.1177/0956797613517240
  2. Adan, A., Prat, G., Fabbri, M., & Sànchez-Turet, M. (2008). Early effects of caffeinated and decaffeinated coffee on subjective state and gender differences. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 32(7), 1698–1703. https://doi.org/10.1016/j.pnpbp.2008.07.005
  3. Addicott, M. A., Yang, L. L., Peiffer, A. M., Burnett, L. R., Burdette, J. H., Chen, M. Y., Hayasaka, S., Kraft, R. A., Maldjian, J. A., & Laurienti, P. J. (2009). The effect of daily caffeine use on cerebral blood flow: How much caffeine can we tolerate? Human Brain Mapping, 30(10), 3102–3114. https://doi.org/10.1002/hbm.20732
  4. Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20–29. https://doi.org/10.1016/j.jecp.2009.11.003
  5. Arnsten, A. F. T. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10(6), 410–422. https://doi.org/10.1038/nrn2648
  6. Ashcraft, M. H., & Faust, M. W. (1994). Mathematics anxiety and mental arithmetic performance: An exploratory investigation. Cognition & Emotion, 8(2), 97–125. https://doi.org/10.1080/02699939408408931
  7. Ashcraft, M. H., & Kirk, E. P. (2001). The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology: General, 130(2), 224–237. https://doi.org/10.1037/0096-3445.130.2.224
  8. Baddeley, A. (2007). Working memory, thought, and action. Oxford University Press.
  9. Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63(1), 1–29. https://doi.org/10.1146/annurev-psych-120710-100422
  10. Batista, P., Rodrigues, P. M., Ferreira, M., Moreno, A., Silva, G., Alves, M., Pintado, M., & Oliveira-Silva, P. (2022). Validation of psychophysiological measures for caffeine oral films characterization by machine learning approaches. Bioengineering, 9(3), 114. https://doi.org/10.3390/bioengineering9030114
  11. Beckmann, J., Gröpel, P., & Ehrlenspiel, F. (2013). Preventing motor skill failure through hemisphere-specific priming: Cases from choking under pressure. Journal of Experimental Psychology: General, 142(3), 679–691. https://doi.org/10.1037/a0029852
  12. Beilock, S. L. (2008). Math performance in stressful situations. Current Directions in Psychological Science, 17(5), 339–343. https://doi.org/10.1111/j.1467-8721.2008.00602.x
  13. Beilock, S. L., Kulp, C. A., Holt, L. E., & Carr, T. H. (2004). More on the fragility of performance: Choking under pressure in mathematical problem solving. Journal of Experimental Psychology: General, 133(4), 584–600. https://doi.org/10.1037/0096-3445.133.4.584
  14. Bijleveld, E., & Veling, H. (2014). Separating chokers from nonchokers: Predicting real-life tennis performance under pressure from behavioral tasks that tap into working memory functioning. Journal of Sport and Exercise Psychology, 36(4), 347–356. https://doi.org/10.1123/jsep.2013-0051
  15. Blasiman, R. N., & Was, C. A. (2018). Why is working memory performance unstable? A review of 21 factors. Europe’s Journal of Psychology, 14(1), 188–231. https://doi.org/10.5964/ejop.v14i1.1472
  16. Boere, J. J., Fellinger, L., Huizinga, D. J. H., Wong, S. F., & Bijleveld, E. (2016). Performance pressure and caffeine both affect cognitive performance, but likely through independent mechanisms. Brain and Cognition, 102, 26–32. https://doi.org/10.1016/j.bandc.2015.11.006
  17. Böheim, R., Grübl, D., & Lackner, M. (2019). Choking under pressure – Evidence of the causal effect of audience size on performance. Journal of Economic Behavior & Organization, 168, 76–93. https://doi.org/10.1016/j.jebo.2019.10.001
  18. Boucsein, W. (2012). Electrodermal Activity (2nd ed.). Springer US. https://doi.org/10.1007/978-1-4614-1126-0
  19. Bradley, M. M., Codispoti, M., Cuthbert, B. N., & Lang, P. J. (2001). Emotion and motivation I: Defensive and appetitive reactions in picture processing. Emotion, 1(3), 276–298. https://doi.org/10.1037/1528-3542.1.3.276
  20. Braithwaite, J. J., Watson, D. P., Jones, R. O., & Rowe, M. A. (2013). Guide for Analysing Electrodermal Activity & Skin Conductance Responses for Psychological Experiments [CTIT technical reports series].
  21. Brunyé, T. T., Mahoney, C. R., Lieberman, H. R., Giles, G. E., & Taylor, H. A. (2010). Acute caffeine consumption enhances the executive control of visual attention in habitual consumers. Brain and Cognition, 74(3), 186–192. https://doi.org/10.1016/j.bandc.2010.07.006
  22. Brysbaert, M. (2019). How many participants do we have to include in properly powered experiments? A tutorial of power analysis with reference tables. Journal of Cognition, 2(1), 16. https://doi.org/10.5334/joc.72
  23. Cappelletti, S., Daria, P., Sani, G., & Aromatario, M. (2015). Caffeine: Cognitive and physical performance enhancer or psychoactive drug? Current Neuropharmacology, 13(1), 71–88. https://doi.org/10.2174/1570159X13666141210215655
  24. Carli, M., & Invernizzi, R. W. (2014). Serotoninergic and dopaminergic modulation of cortico-striatal circuit in executive and attention deficits induced by NMDA receptor hypofunction in the 5-choice serial reaction time task. Frontiers in Neural Circuits, 8. https://doi.org/10.3389/fncir.2014.00058
  25. Christopoulos, G. I., Uy, M. A., & Yap, W. J. (2019). The body and the brain: Measuring skin conductance responses to understand the emotional experience. Organizational Research Methods, 22(1), 394–420. https://doi.org/10.1177/1094428116681073
  26. Cohen, L., Manion, L., & Morrison, K. (2007). Research methods in education (10 ed.). Routledge. https://doi.org/10.4324/9780203029053
  27. Cools, R., & D’Esposito, M. (2011). Inverted-U–shaped dopamine actions on human working memory and cognitive control. Biological Psychiatry, 69(12), e113–e125. https://doi.org/10.1016/j.biopsych.2011.03.028
  28. Costa, J., Guimbretière, F., Jung, M. F., & Choudhury, T. (2019). BoostMeUp: Improving cognitive performance in the moment by unobtrusively regulating emotions with a smartwatch. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(2), 1–23. https://doi.org/10.1145/3328911
  29. Cowan, N. (2014). Working memory underpins cognitive development, learning, and education. Educational Psychology Review, 26(2), 197–223. https://doi.org/10.1007/s10648-013-9246-y
  30. Critchley, H. D. (2002). Review: Electrodermal responses: What happens in the brain. The Neuroscientist, 8(2), 132–142. https://doi.org/10.1177/107385840200800209
  31. Dawson, M. E., Schell, A. M., & Filion, D. L. (2000). The electrodermal system. In Handbook of Psychophysiology (Second, pp. 200–223). Cambridge Press.
  32. DeCaro, M. S., Rotar, K. E., Kendra, M. S., & Beilock, S. L. (2010). Diagnosing and alleviating the impact of performance pressure on mathematical problem solving. Quarterly Journal of Experimental Psychology, 63(8), 1619–1630. https://doi.org/10.1080/17470210903474286
  33. DeCaro, M. S., Thomas, R. D., Albert, N. B., & Beilock, S. L. (2011). Choking under pressure: Multiple routes to skill failure. Journal of Experimental Psychology: General, 140(3), 390–406. https://doi.org/10.1037/a0023466
  34. Dechenaux, E., Kovenock, D., & Sheremeta, R. M. (2015). A survey of experimental research on contests, all-pay auctions and tournaments. Experimental Economics, 18(4), 609–669. https://doi.org/10.1007/s10683-014-9421-0
  35. Duff, S. J., & Hampson, E. (2000). A beneficial effect of estrogen on working memory in postmenopausal women taking hormone replacement therapy. Hormones and Behavior, 38(4), 262–276. https://doi.org/10.1006/hbeh.2000.1625
  36. El Sayed, K., Macefield, V. G., Hissen, S. L., Joyner, M. J., & Taylor, C. E. (2016). Rate of rise in diastolic blood pressure influences vascular sympathetic response to mental stress: Blood pressure and sympathetic responses to stressors. The Journal of Physiology, 594(24), 7465–7482. https://doi.org/10.1113/JP272963
  37. Flaten, M. A., Aasli, O., & Blumenthal, T. D. (2003). Expectations and placebo responses to caffeine-associated stimuli. Psychopharmacology, 169(2), 198–204. https://doi.org/10.1007/s00213-003-1497-8
  38. Glade, M. J. (2010). Caffeine-not just a stimulant. Nutrition (Burbank, Los Angeles County, Calif.), 26(10), 932–938. https://doi.org/10.1016/j.nut.2010.08.004
  39. Hale, S., Rose, N. S., Myerson, J., Strube, M. J., Sommers, M., Tye-Murray, N., & Spehar, B. (2011). The structure of working memory abilities across the adult life span. Psychology and Aging, 26(1), 92–110. https://doi.org/10.1037/a0021483
  40. Hampson, E., & Morley, E. E. (2013). Estradiol concentrations and working memory performance in women of reproductive age. Psychoneuroendocrinology, 38(12), 2897–2904. https://doi.org/10.1016/j.psyneuen.2013.07.020
  41. Haskell, C. F., Kennedy, D. O., Wesnes, K. A., & Scholey, A. B. (2005). Cognitive and mood improvements of caffeine in habitual consumers and habitual non-consumers of caffeine. Psychopharmacology, 179(4), 813–825. https://doi.org/10.1007/s00213-004-2104-3
  42. Imbo, I., Vandierendonck, A., & Vergauwe, E. (2007). The role of working memory in carrying and borrowing. Psychological Research, 71(4), 467–483. https://doi.org/10.1007/s00426-006-0044-8
  43. Jansen, B. R. J., Louwerse, J., Straatemeier, M., Van der Ven, S. H. G., Klinkenberg, S., & Van der Maas, H. L. J. (2013). The influence of experiencing success in math on math anxiety, perceived math competence, and math performance. Learning and Individual Differences, 24, 190–197. https://doi.org/10.1016/j.lindif.2012.12.014
  44. Jee, S. H., He, J., Whelton, P. K., Suh, I., & Klag, M. J. (1999). The effect of chronic coffee drinking on blood pressure: A meta-analysis of controlled clinical trials. Hypertension, 33(2), 647–652. https://doi.org/10.1161/01.HYP.33.2.647
  45. Klaassen, E. B., de Groot, R. H. M., Evers, E. A. T., Snel, J., Veerman, E. C. I., Ligtenberg, A. J. M., Jolles, J., & Veltman, D. J. (2013). The effect of caffeine on working memory load-related brain activation in middle-aged males. Neuropharmacology, 64, 160–167. https://doi.org/10.1016/j.neuropharm.2012.06.026
  46. Lang, P. J. (1995). The emotion probe: Studies of motivation and attention. American Psychologist, 50(5), 372–385. https://doi.org/10.1037/0003-066X.50.5.372
  47. Lejbak, L., Crossley, M., & Vrbancic, M. (2011). A male advantage for spatial and object but not verbal working memory using the n-back task. Brain and Cognition, 76(1), 191–196. https://doi.org/10.1016/j.bandc.2010.12.002
  48. Lempert, K. M., & Phelps, E. A. (2014). Neuroeconomics of emotion and decision making. In Neuroeconomics (pp. 219–236). Elsevier. https://doi.org/10.1016/B978-0-12-416008-8.00012-7
  49. Lieberman, H., Tharion, W., Shukitt-Hale, B., Speckman, K., & Tulley, R. (2002). Effects of caffeine, sleep loss, and stress on cognitive performance and mood during U.S. Navy SEAL training. Psychopharmacology, 164(3), 250–261. https://doi.org/10.1007/s00213-002-1217-9
  50. Lin, Y.-S., Weibel, J., Landolt, H.-P., Santini, F., Slawik, H., Borgwardt, S., Cajochen, C., & Reichert, C. F. (2023). Brain activity during a working memory task after daily caffeine intake and caffeine withdrawal: A randomized double-blind placebo-controlled trial. Scientific Reports, 13(1), 1002. https://doi.org/10.1038/s41598-022-26808-5
  51. Lorist, M. M., & Tops, M. (2003). Caffeine, fatigue, and cognition. Brain and Cognition, 53(1), 82–94. https://doi.org/10.1016/S0278-2626(03)00206-9
  52. Lyvers, M., Brooks, J., & Matica, D. (2004). Effects of caffeine on cognitive and autonomic measures in heavy and light caffeine consumers. Australian Journal of Psychology, 56(1), 33–41. https://doi.org/10.1080/00049530410001688119
  53. Mattarella-Micke, A., Mateo, J., Kozak, M. N., Foster, K., & Beilock, S. L. (2011). Choke or thrive? The relation between salivary cortisol and math performance depends on individual differences in working memory and math-anxiety. Emotion, 11(4), 1000–1005. https://doi.org/10.1037/a0023224
  54. McCann, J., & Selsky, J., W. (2012). Mastering turbulence: The essential capabilities of agile and resilient individuals, teams and organizations. Jassey-Bass.
  55. Mort, J. R., & Kruse, H. R. (2008). Timing of blood pressure measurement related to caffeine consumption. Annals of Pharmacotherapy, 42(1), 105–110. https://doi.org/10.1345/aph.1K337
  56. Nehlig, A. (2010). Is caffeine a cognitive enhancer? Journal of Alzheimer’s Disease, 20(s1), S85–S94. https://doi.org/10.3233/JAD-2010-091315
  57. Peeling, P., & Dawson, B. (2007). Influence of caffeine ingestion on perceived mood states, concentration, and arousal levels during a 75-min university lecture. Advances in Physiology Education, 31(4), 332–335. https://doi.org/10.1152/advan.00003.2007
  58. Pelligrino, D. A., Xu, H.-L., & Vetri, F. (2010). Caffeine and the control of cerebral hemodynamics. Journal of Alzheimer’s Disease, 20(s1), S51–S62. https://doi.org/10.3233/JAD-2010-091261
  59. Reidel, W., Hogervorst, E., Leboux, R., Verhey, F., van Praag, H., & Jolles, J. (1995). Caffeine attenuates scopolamine-induced memory impairment in humans. Psychopharmacology, 122(2), 158–168. https://doi.org/10.1007/BF02246090
  60. Reimann, M., & Bechara, A. (2010). The somatic marker framework as a neurological theory of decision-making: Review, conceptual comparisons, and future neuroeconomics research. Journal of Economic Psychology, 31(5), 767–776. https://doi.org/10.1016/j.joep.2010.03.002
  61. Richards, G., & Smith, A. (2015). Caffeine consumption and self-assessed stress, anxiety, and depression in secondary school children. Journal of Psychopharmacology, 29(12), 1236–1247. https://doi.org/10.1177/0269881115612404
  62. Riksen, N. P., Rongen, G. A., & Smits, P. (2009). Acute and long-term cardiovascular effects of coffee: Implications for coronary heart disease. Pharmacology & Therapeutics, 121(2), 185–191. https://doi.org/10.1016/j.pharmthera.2008.10.006
  63. Schneider, R., Grüner, M., Heiland, A., Keller, M., Kujanová, Z., Peper, M., Riegl, M., Schmidt, S., Volz, P., & Walach, H. (2006). Effects of expectation and caffeine on arousal, well-being, and reaction time. International Journal of Behavioral Medicine, 13(4), 330–339. https://doi.org/10.1207/s15327558ijbm1304_8
  64. Smeding, A., Darnon, C., & Van Yperen, N. W. (2015). Why do high working memory individuals choke? An examination of choking under pressure effects in math from a self-improvement perspective. Learning and Individual Differences, 37, 176–182. https://doi.org/10.1016/j.lindif.2014.11.005
  65. Smith, A. (2002). Effects of caffeine on human behavior. Food and Chemical Toxicology, 40(9), 1243–1255. https://doi.org/10.1016/S0278-6915(02)00096-0
  66. Smith, A. (2009). Effects of caffeine in chewing gum on mood and attention. Human Psychopharmacology: Clinical and Experimental, 24(3), 239–247. https://doi.org/10.1002/hup.1020
  67. Smith, A. P. (2013). Caffeine, extraversion and working memory. Journal of Psychopharmacology, 27(1), 71–76. https://doi.org/10.1177/0269881112460111
  68. Smith, A. P., Sturgess, W., & Gallagher, J. (1999). Effects of a low dose of caffeine given in different drinks on mood and performance. Human Psychopharmacology: Clinical and Experimental, 14, 478–482.
  69. Uittenhove, K., & Lemaire, P. (2013). Strategy sequential difficulty effects vary with working-memory and response–stimulus-intervals: A study in arithmetic. Acta Psychologica, 143(1), 113–118. https://doi.org/10.1016/j.actpsy.2013.02.007
  70. Ullrich, S., de Vries, Y. C., Kühn, S., Repantis, D., Dresler, M., & Ohla, K. (2015). Feeling smart: Effects of caffeine and glucose on cognition, mood and self-judgment. Physiology & Behavior, 151, 629–637. https://doi.org/10.1016/j.physbeh.2015.08.028
  71. Unsworth, N., & Engle, R. (2005). Working memory capacity and fluid abilities: Examining the correlation between Operation Span and Raven. Intelligence, 33(1), 67–81. https://doi.org/10.1016/j.intell.2004.08.003
  72. Uziel, L. (2007). Individual differences in the social facilitation effect: A review and meta-analysis. Journal of Research in Personality, 41(3), 579–601. https://doi.org/10.1016/j.jrp.2006.06.008
  73. Vogel, S., & Schwabe, L. (2016). Learning and memory under stress: Implications for the classroom. Npj Science of Learning, 1(1), 16011. https://doi.org/10.1038/npjscilearn.2016.11
  74. Wan, C. Y., & Huon, G. F. (2005). Performance degradation under pressure in music: An examination of attentional processes. Psychology of Music, 33(2), 155–172. https://doi.org/10.1177/0305735605050649
  75. Wine, J. (1971). Test anxiety and direction of attention. Psychological Bulletin, 76(2), 92–104. https://doi.org/10.1037/h0031332
  76. Yu, R. (2015). Choking under pressure: The neuropsychological mechanisms of incentive-induced performance decrements. Frontiers in Behavioral Neuroscience, 9. https://doi.org/10.3389/fnbeh.2015.00019
  77. Zwaan, R. A., Pecher, D., Paolacci, G., Bouwmeester, S., Verkoeijen, P., Dijkstra, K., & Zeelenberg, R. (2018). Participant nonnaiveté and the reproducibility of cognitive psychology. Psychonomic Bulletin & Review, 25(5), 1968–1972. https://doi.org/10.3758/s13423-017-1348-y

Open Access Copyright (c) 2023 Psikohumaniora: Jurnal Penelitian Psikologi
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Publisher:
Faculty of Psychology and Health, Universitas Islam Negeri Walisongo Semarang
Jl. Prof. Dr. HAMKA, Kampus III, Tambakaji Ngaliyan Semarang 50185 Central Java - Indonesia
website: fpk.walisongo.ac.id

 
Visitor Statistics
apps